Movimiento Armónico
Simple. M.A.S. Osciladores (I) Osciladores
no lineales (II) Introducción al
régimen caótico Osciladores acoplados Bibliografía. OscilacionesAlvarez, Luis W., Senecal G. Mechanical analog of the synchrotron, illustrating phase stability and two-dimensional focusing. Am. J. Phys. 43 (4) April 1972, pp. 293-296 Amengual Colom A., Oscilaciones en una máquina de Atwood. Revista Española de Física.V 20, nº 1, Enero- Marzo 2006, págs. 43-47 Bacon R. H., The motion of a piston, Am. J. Phys. (10) 1942, pp. 145-147 Bacon M. E., Do Dai Nguyen. Real-world damping of a physical pendulum. Eur. J. Phys. 26 (2005) pp. 651-655 Barrat C., Strobel G. L. Sliding friction and the harmonic oscillator. Am. J. Phys. 49 (5) May 1981, pp. 500-501. Berg R. E. Pendulum waves: A demonstration of wave motion using pendula. Am. J. Phys. 59 (2), February 1991, pp. 186-187 Berg R. H, Marshall T. Wilberforce pendulum oscillations and normal modes. Am. J. Phys. 59 (1) January 1991, pp. 32-38. Brito L. Fiolhais M, Paixao J. Cylinder on an incline as a fold catastrophe system. Eur. J. Phys. 24 (2003) pp. 115-123. Black M. A. A one-dimensional approach to Gruneisen's constant. Phys. Educ pp. 515-518 Butikov. E. The rigid pendulum -an antique but evergreen physical model. Eur. J. Phys. 20 (1999) pp. 429-441. Cayton T. E., The laboratory spring-mass oscillator: an example of parametric instability. Am. J. Phys. 45 (8) August 1977, pp. 723-732. Crawford Jr. Ondas, Berkeley Physics Course. Editorial Reverté. (1977) Crutchfield J. P., Doyne Farmer J. Caos. Investigación y Ciencia, nº 125, Febrero 1987, págs. 16-29. Debowska, Jakubowicz, Mazur. Computer visualization of the beating of a Wilberforce pendulum. Eur. J. Phys. 20, 1999, pp. 89-95. De Jong M. L. Chaos and the simple pendulum. The Physics Teacher. 30, Feb. 1992, pp. 115-121 DeMarcus W. C. Classical motion of a Morse oscillator. Am. J. Phys. 46 (7) July 1978, pp. 733-734 Denny M. Stick-slip motion: an important example of self-excited oscillation. Eur. J. Phys. 25, (2004), pp. 311-322. Detcheva V., Spassov V., A simple nonlinear oscillator: analytical amd numerical solution. Phys. Educ. 28 (1993) pp. 39-42 Dubois M, Aften P., Bergé P. El orden caótico. Mundo Científico V-7, nº 68, Abril 1987, págs. 428-439 Flaten J. A. Parendo K. A., Pendulum waves: A lesson in aliasing. Am. J. Phys. 69 (7) July 2001, pp. 778-782 Fuertes. El modesto péndulo. Revista Española de Física, V-4, nº 3, 1990, págs. 82-86. Gaffney C, Kagan D. Beats in an oscillator near resonance. The Physics Teacher, Vol 40, October 2002, pp. 405-407. Gonzalo P. La ley de Hooke, masa y periodo de un resorte. Revista Española de Física, V-5, nº 1, 1991, págs. 36. González M. I., Bol A. Controlled damping of a physical pendulum: expriments near critical conditions. Eur. J. Phys. 27 (2006) pp. 257-264 Greenhow R. C. A mechanical resonance experiment with fluid dynamic undercurrents. Am. J. Phys. 56 (4) April 1988, pp. 352-357 Jasselette P., Vandermeulen J. More on Lissajous figures. Am. J. Phys. 54 (2) February 1986, pp. 182-183 Karioris F. G., Mendelson K. S., A novel coupled oscillation demostration. Am. J. Phys. 60 (6) June 1992, pp. 508-513 Karlow E. A. Ripples in the energy of a damped harmonic oscillator. Am. J. Phys. 62 (7) July 1994, pp. 634-636 Köpf U. Wilberforce's pendulum revisited. Am. J. Phys. 58 (9) September 1990, pp. 833-837 Kotkin G. L., Serbo V. G. Problemas de Mecánica clásica. Editorial Mir 1980. págs. 30, 159-161 Lai H. M. On the recurrence phenomenon of a resonant spring pendulum. Am. J. Phys. 52 (3) March 1984, pp. 219-223 Lapidus I. R., Motion of a harmonic oscillator with sliding friction. Am. J. Phys. 38 (1970) pp. 1360-1361 Laws P. W. A unit on oscillations, determinism and chaos for introductory physics students. Am. J. Phys. 72 (4) April 2004, pp. 446-452. Lee S. M. The double-simple pendulum problem. Am. J. Phys. 38 (1970) pp. 536-537 Lévesque L. Revisiting the coupled-mass system and analogy with a simple band gap structure. Eur. J. Phys. 27 (2006) pp. 133-145 Lipham J. G., Pollack V. L. Constructing a “misbehaving” spring. Am. J. Phys. 46 (1), January 1978, pp. 110-111. Lopac V., Dananic V. Energy conservation and chaos in the gravitationally driven Fermi oscillator. Am. J. Phys. 66 (10) October 1998, pp. 892-902 LoPresto M. C., Holody P. R., Measuring the damping constant for under-damped harmonic motion. The Physics Teacher 41, January 2003, pp. 22-24 Marchewka A, Abbott D., Beichner R., Oscillator damped by a constant-magnitude friction force. Am. J. Phys. 72 (4) April 2004, pp. 477-483 Mohazzabi P. Theory and examples of intrinsically nonlinear oscillators. Am. J. Phys. 72 (4) April 2004, pp. 492-498 Molina M. I. Exponential versus linear amplitude decay in damped oscillators. The Physics Teacher, Vol. 42, November 2004, pp. 485-487 Mu-Shiang Wu, W. H. Tsai. Corrections for Lissajous figures in books. Am. J. Phys. 52 (7) July 1984, pp. 657-658 Nelson R. The pendulum. Rich physics from a simple system. Am. J. Phys. 54 (2) February 1986, pp. 112-121 Núñez Yépez, Salas Brito, Vargas, Vicente. Chaos in a dripping faucet. Eur. J. Phys. 10 (1989) pp. 99-105 Olsson M. G. Why does a mass on a spring sometimes misbehave?. Am. J. Phys. 44 (12) December 1976, pp. 1211-1212. Rañada. Movimiento caótico. Investigación y Ciencia. nº 114, Marzo 1986, págs. 12-24 Runk R. B. Stul J. L. Anderson G. L. A laboratory analog for lattice dynamics. Am. J. Phys. (31) 1963, pp. 915-921 Rusbridge M.G., Motion of the sprung pendulum. Am. J. Phys. 48 (2) February 1980, pp. 146-151. Sendiña I., Sanjuan M. Sistemas lineales y no lineales: del oscilador armónico al oscilador caótico. Revista Española de Física, V-16, nº 3, 2002, págs. 30-35. Schmidt T., Marhl M. A simple mathematical model of a dripping tap. Eur. J. Phys. 18 (1997), 377-383 Simbach J. C., Priest J., Another look at damped physical pendulum. Am. J. Phys. 73 (11) November 2005, pp. 1079-1080 Soares de Castro A. Damped harmonic oscillator: A correction in some standard textbooks. Am. J. Phys. 54 (8) August 1986, pp. 741-742 Solaz J. J. Una práctica con el péndulo transformada en investigación. Revista Española de Física, V-4, nº 3, 1990, págs. 87-94. Thomson D. A simple model of thermal expansion. Eur. J. Phys. 17 (1996), pp. 85-87 Tufillaro N. B., Mello T. M., Choi Y. M. Albano A. M. Period doubling of a bouncing ball, J. Physique 47 Septembre (1986) pp. 1477-1482 Tufillaro N. B., Albano A. M., Chaotic dynamics of a bouncing ball. Am. J. Phys. 54 (10) October 1986, pp. 939-944 Tufillaro N. B., Abott T. A. Griffiths D. J. Swinging Atwood’s machine. Am. J. Phys. 52 (10) October 1984, pp. 895-903 Varios autores. La Ciencia del caos. Número especial de la revista Mundo Científico, nº 115, Julio-Agosto de 1991. Vega D., Vera S., Juan A., A computer-aided modelling analogue for lattice dynamics. Eur. J. Phys. 18 (1987) pp. 398-403 Walker J. S., Soule T. Chaos in a simple impact oscillator: The Bender bouncer. Am. J. Phys. 64 (4) April 1996, pp. 397-409 Weigman B. J., Perry H. F. Experimental determination of normal frequencies in coupled mechanical oscillator systems using fast Fourier transform: An advanced undergarduate laboratory. Am. J. Phys. 61 (11) November 1993, pp. 1022-1027 Xiao-jun Wang, Schmitt C. Payne M. Oscillations with three dammping effects. Eur. J. Phys. 23 (2002) pp. 155-164. Zheng, Mears, Hall, Pushkin. Teaching the nonlinear pendulum. The Physics Teacher, Vol. 32, April 1984, pp. 248-251. Zonetti L. F. C, Camargo A.S. S , Sartori J, de Sousa D.F., Nunes L. A. O. A demostration of dry and viscous damping of an oscillating pendulum. Eur. J. Phys. 20 (1999) pp. 85-88 |
miércoles, 27 de octubre de 2010
Oscilaciones
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario