Camara


miércoles, 27 de octubre de 2010

Oscilaciones



phol.jpg (20624 bytes)
Movimiento Armónico
Simple. M.A.S.
 
Osciladores (I)
 
Osciladores  
no lineales (II)
 
Introducción al 
régimen caótico
 
Osciladores acoplados
 

Bibliografía. Oscilaciones

Alvarez, Luis W., Senecal G. Mechanical analog of the synchrotron, illustrating phase stability and two-dimensional focusing. Am. J. Phys. 43 (4) April 1972, pp. 293-296
Amengual Colom A., Oscilaciones en una máquina de Atwood. Revista Española de Física.V 20, nº 1, Enero- Marzo 2006, págs. 43-47
Bacon R. H., The motion of a piston, Am. J. Phys.  (10) 1942, pp. 145-147
Bacon M. E., Do Dai Nguyen. Real-world damping of a physical pendulum. Eur. J. Phys. 26 (2005) pp. 651-655
Barrat C., Strobel G. L. Sliding friction and the harmonic oscillator. Am. J. Phys. 49 (5) May 1981, pp. 500-501.
Berg R. E. Pendulum waves: A demonstration of wave motion using pendula. Am. J. Phys. 59 (2), February 1991, pp. 186-187
Berg R. H, Marshall T. Wilberforce pendulum oscillations and normal modes. Am. J. Phys. 59 (1) January 1991, pp. 32-38.
Brito L. Fiolhais M, Paixao J. Cylinder on an incline as a fold catastrophe system. Eur. J. Phys. 24 (2003) pp. 115-123.
Black M. A. A one-dimensional approach to Gruneisen's constant. Phys. Educ pp. 515-518
Butikov. E. The rigid pendulum -an antique but evergreen physical model. Eur. J. Phys. 20 (1999) pp. 429-441.
Cayton T. E., The laboratory spring-mass oscillator: an example of parametric instability. Am. J. Phys. 45 (8) August 1977, pp. 723-732.
Crawford Jr. Ondas, Berkeley Physics Course. Editorial Reverté. (1977)
Crutchfield J. P., Doyne Farmer J. Caos. Investigación y Ciencia, nº 125, Febrero 1987, págs. 16-29.
Debowska, Jakubowicz, Mazur. Computer visualization of the beating of a Wilberforce pendulum. Eur. J. Phys. 20, 1999, pp. 89-95.
De Jong M. L. Chaos and the simple pendulum. The Physics Teacher. 30, Feb. 1992, pp. 115-121
DeMarcus W. C. Classical motion of a Morse oscillator. Am. J. Phys. 46 (7) July 1978, pp. 733-734
Denny M. Stick-slip motion: an important example of self-excited oscillation. Eur. J. Phys. 25, (2004), pp. 311-322.
Detcheva V., Spassov V., A simple nonlinear oscillator: analytical amd numerical solution.  Phys. Educ. 28 (1993) pp. 39-42
Dubois M, Aften P., Bergé P. El orden caótico. Mundo Científico V-7, nº 68, Abril 1987, págs. 428-439
Flaten J. A. Parendo K. A., Pendulum waves: A lesson in aliasing. Am. J. Phys. 69 (7) July 2001, pp. 778-782
Fuertes. El modesto péndulo. Revista Española de Física, V-4, nº 3, 1990, págs. 82-86.
Gaffney C, Kagan D. Beats in an oscillator near resonance. The Physics Teacher, Vol 40, October 2002, pp. 405-407.
Gonzalo P. La ley de Hooke, masa y periodo de un resorte. Revista Española de Física, V-5, nº 1, 1991, págs. 36.
González M. I., Bol A. Controlled damping of a physical pendulum: expriments near critical conditions. Eur. J. Phys. 27 (2006) pp. 257-264
Greenhow R. C. A mechanical resonance experiment with fluid dynamic undercurrents. Am. J. Phys. 56 (4) April 1988, pp. 352-357
Jasselette P., Vandermeulen J. More on Lissajous figures. Am. J. Phys. 54 (2) February 1986, pp. 182-183
Karioris F. G., Mendelson K. S., A novel coupled oscillation demostration. Am. J. Phys. 60 (6) June 1992, pp. 508-513
Karlow E. A. Ripples in the energy of a damped harmonic oscillator. Am. J. Phys. 62 (7) July 1994, pp. 634-636
Köpf U. Wilberforce's pendulum revisited. Am. J. Phys. 58 (9) September 1990, pp. 833-837
Kotkin G. L., Serbo V. G. Problemas de Mecánica clásica. Editorial Mir 1980.  págs. 30, 159-161
Lai H. M. On the recurrence phenomenon of a resonant spring pendulum. Am. J. Phys. 52 (3) March 1984, pp. 219-223
Lapidus I. R., Motion of a harmonic oscillator with sliding friction. Am. J. Phys. 38 (1970) pp. 1360-1361
Laws P. W. A unit on oscillations, determinism and chaos for introductory physics students. Am. J. Phys. 72 (4) April 2004, pp. 446-452.
Lee S. M. The double-simple pendulum problem. Am. J. Phys. 38 (1970) pp. 536-537
Lévesque L. Revisiting the coupled-mass system and analogy with a simple band gap structure. Eur. J. Phys. 27 (2006) pp. 133-145
Lipham J. G., Pollack V. L. Constructing a “misbehaving” spring. Am. J. Phys. 46 (1), January 1978, pp. 110-111.
Lopac V., Dananic V. Energy conservation and chaos in the gravitationally driven Fermi oscillator. Am. J. Phys. 66 (10) October 1998, pp. 892-902
LoPresto M. C., Holody P. R., Measuring the damping constant for under-damped harmonic motion. The Physics Teacher 41, January 2003, pp. 22-24
Marchewka A, Abbott D., Beichner R., Oscillator damped by a constant-magnitude friction force. Am. J. Phys. 72 (4) April 2004, pp. 477-483
Mohazzabi P. Theory and examples of intrinsically nonlinear oscillators. Am. J. Phys. 72 (4) April 2004, pp. 492-498
Molina M. I. Exponential versus linear amplitude decay in damped oscillators. The Physics Teacher, Vol. 42, November 2004, pp. 485-487
Mu-Shiang Wu, W. H. Tsai. Corrections for Lissajous figures in books. Am. J. Phys. 52 (7) July 1984, pp. 657-658
Nelson R. The pendulum. Rich physics from a simple system. Am. J. Phys. 54 (2) February 1986, pp. 112-121
Núñez Yépez, Salas Brito, Vargas, Vicente. Chaos in a dripping faucet. Eur. J. Phys. 10 (1989) pp. 99-105
Olsson M. G. Why does a mass on a spring sometimes misbehave?. Am. J. Phys. 44 (12) December 1976, pp. 1211-1212.
Rañada. Movimiento caótico. Investigación y Ciencia. nº 114, Marzo 1986, págs. 12-24
Runk R. B. Stul J. L. Anderson G. L. A laboratory analog for lattice dynamics. Am. J. Phys. (31) 1963, pp. 915-921
Rusbridge M.G., Motion of the sprung pendulum. Am. J. Phys. 48 (2) February 1980, pp. 146-151.
Sendiña I., Sanjuan M. Sistemas lineales y no lineales: del oscilador armónico al oscilador caótico. Revista Española de Física, V-16, nº 3, 2002, págs. 30-35.
Schmidt T., Marhl M. A simple mathematical model of a dripping tap. Eur. J. Phys. 18 (1997), 377-383
Simbach J. C., Priest J., Another look at damped physical pendulum. Am. J. Phys. 73 (11) November 2005, pp. 1079-1080
Soares de Castro A. Damped harmonic oscillator: A correction in some standard textbooks. Am. J. Phys. 54 (8) August 1986, pp. 741-742
Solaz J. J. Una práctica con el péndulo transformada en investigación. Revista Española de Física, V-4, nº 3, 1990, págs. 87-94.
Thomson D. A simple model of thermal expansion. Eur. J. Phys. 17 (1996), pp. 85-87
Tufillaro N. B., Mello T. M., Choi Y. M. Albano A. M. Period doubling of a bouncing ball, J. Physique 47 Septembre (1986) pp. 1477-1482
Tufillaro N. B., Albano A. M., Chaotic dynamics of a bouncing ball. Am. J. Phys. 54 (10) October 1986, pp. 939-944
Tufillaro N. B., Abott T. A. Griffiths D. J. Swinging Atwood’s machine. Am. J. Phys. 52 (10) October 1984, pp. 895-903
Varios autores. La Ciencia del caos. Número especial de la revista Mundo Científico, nº 115, Julio-Agosto de 1991.
Vega D., Vera S., Juan A., A computer-aided modelling analogue for lattice dynamics. Eur. J. Phys. 18 (1987) pp. 398-403
Walker J. S., Soule T. Chaos in a simple impact oscillator: The Bender bouncer. Am. J. Phys. 64 (4) April 1996, pp. 397-409
Weigman B. J., Perry H. F. Experimental determination of normal frequencies in coupled mechanical oscillator systems using fast Fourier transform: An advanced undergarduate laboratory. Am. J. Phys. 61 (11) November 1993, pp. 1022-1027
Xiao-jun Wang, Schmitt C. Payne M. Oscillations with three dammping effects. Eur. J. Phys. 23 (2002) pp. 155-164.
Zheng, Mears, Hall, Pushkin. Teaching the nonlinear pendulum. The Physics Teacher, Vol. 32, April 1984, pp. 248-251.
Zonetti L. F. C, Camargo A.S. S , Sartori J, de Sousa D.F., Nunes L. A. O. A demostration of dry and viscous damping of an oscillating pendulum. Eur. J. Phys. 20 (1999) pp. 85-88

 

 
  

No hay comentarios:

Publicar un comentario